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SUMMARY /]85 8

The effects of a constant external magnetic field on the laminar,
fully developed flow of an electrically conducting incompressible
rarefied gas 1ln a nonconducting parallel-plate channel are studied.
Consideration is glven to the slip-flow regime, wherein a gas veloc-
ity discontinulty occurs at the channel walls. It is found that the
magnitude of the slip velocity is unaffected by the magnetic-field
strength for a given pressure drop, but that the mean gas velocity and
wall friction coefficient are functions of both the velocity slip coef-
ficient and the magnetic-fileld strength. The effect of a second-order
slip-flow boundary condition is briefly discussed. AoT 0

INTRODUCTION

In récent years, conslderasble interest has developed in the study
of the interaction between magnetic fields and the flow of electrically
conducting fluids or gases. As is well known, geses at high tempera-
tures become ionized; ionized gases conduct electricity and can be
acted upon by magnetic fields. A growing body of both experimental
and theoreticel results on this subject has been obtained and has been

reviewed in texte on magnetogasdynemics (e.g., ref. 1).
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Another topic of current interest is the flow of low-density
gases in channels. Gas flows under normal density conditions are
called continuum flows. As the density is reduced, either through
an increase in temperature or & decrease in absolute pressure, a de-
parture from continuum gas-dynamics phenomens occurs. The first ef-
fect of the gas rarefaction is displayed as a slip of the gas over
the bounding wall. This flow regime is termed slip flow. The flow of
rarefied gases is conveniently summarized in ref. 2.

The study to be reported herein is concerned with the slip-flow
regime. Specifically, the effects of a magnetic field on the flow of
a slightly rarefied, conducting gas in a parallel-plate channel are
studied. Within the knowledge of the author, the problem of slip flow
in a magnetic field has received very little attention. Low-speed
plane Couette flow of a rarefied conducting gas in a uniform transverse
magnetic field has been considered (ref. 3) through equations developed
from the Boltzmann equation of the kinetic theory of gases. The re-
sults are belleved to be indicative of boundary-layer flow of a rare-
fied gas over a flat plate in the presence of a magnetic field.

The purpose of the present work is to study the combined effects
of velocilty slip and magnetic field on the steady laminar flow of an
incompressible, electrically conducting gas of constant electrical
conduetivity between two parallel walls. The assumption of incomprese-

ible flow and uniform electrical conductivity in the entire flow field



is physlcally realizable for the case of subsonlc flows of a rela-
tively hot gas. The veloclity of the flow is parallel to the channel

walls, and there is an external magnetic fileld of constant strength
transverse to these walls. The more generally aceepted method of
analysis for slip flows 1s utilized herej; i.e., the continuum equa-
tions of motion are used throughout the gas, together with the slip
velocity boundary condition at the duct walls (ref. 2). It is felt
that this study will yield some understanding of the interaction of
a magnetic field with duct flow of a slightly rarefied conducting gas.
Buch flow problems could arise, for example, in magnetogasdynamic
(MGD) generators that use relatively low-pressure, high-temperature
gases as the working fluid, and in MGD space-flight propulsion systems.

In the next section, the flrst-order velocity slip boundsxry con-
dition 1s imposed, and the results are considered in some detail. The
effect of a second-order jump boundary condition is taken up briefly
in the final section.

FIRST-ORDER SLIP FLOW

Dimensions and coprdinates for the system under study are shown
in fig. 1. The equation of motion for the fully-developed axial flow
ineluding a body force arising from the magnetic and electric fields

is (ref. 4)

3p/dx = p JE, + p(dfu/az?), (1)
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vwhere Jp/dx 1s the axial pressure gradient, p, the gas permea-
bility, j the cwrrent, H, the imposed magnetic field, y the gas
viscosity, and u the axial gas velocity. The absolute cgs system
of units 1s adopted here. From the generalized Ohm's law, there can
be pubstituted (ref. 4)

J = o(E - poul,), (2)
where E 1is the electric-field intensity and o 1is the gas elec-

trical conductivity, to cobtain the differential equation for u:
9p/ox = p 0B _(E - puH ) + u(au/az2). (3)
Defining 1 = z/L and P = -3p/dx gives
d®u/an? - Meu = - MZ(P/uchg + E/uE ), (4)

where M 1s a dimensionless parameter called the Hartmann number,
1l/2
neEot(ofu) 2.
The slip-flow boundary condition that permits a slip velocity

uy at the duct walls (q = ¢ 1) is written as (ref. 2)

]
L
+
L
g
n

ug =3 [(Eu/L)(du/dT]Bn:il. (s)
The slip coeffilcient §u is glven by the expression (ref. 2)

e, = [(2-8)/8]7, (6)
where 1 1is the mean free path, given by (ref. 2)

7 = (./3,75/(1.409) " (.fﬁ'/m (7)
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and B 18 termed Maxwell's reflection coefficlent; R 1s the gas
constant.
The golution for the velocity distribution satisfying eqs. (4)

and (5) is
u(n) = (P/u‘goﬂi + E/u B )(L - « cosh Mn/cosh M), (8)
where a = l/ [l + (g,/L)M tanh M].
If conservation of current within any element of channel length

is agsumed; i.e., if there 1s no net currenmt flow through the channel,

then 1t follows that

Jdz = 0, (9)

C e
|}
o

-1
where § is the mean curremt. Substituting egs. (2) and (8) imto

eq. (9) and carrying out the integration yleld
2 2 2 2
(P/ugay + B/ucH,) = (B/ugoHy) (1/a tenh M). (10)
From the definition of the Hartmsnn number, however,
ugoﬁg = Mzu/Lz, and hence an alternate form of eq. (10) is
2 2
R+ BB = (1) 0. (11)
Utilizing eq. (10) allows eq. (8) to become
u(n) = (H&/ugcﬁg) [(cosh M - o cosh M'Q)’cx, sinh M] (12)

The mesn gas veloclty U 1is obtained from the definition



1

u =—% udn = (P/uing)KM coth M/a) - 1) (13)
-1

With division of eq. (12) by eq. (13), a dimensionless velocity distri-

bution in the duct 1s obtalned:
u/t = (1 - @ cosh Mn/cosh M)/(L - « tanh M/M). (14)

‘Thig equation can be recast into an equivalent form that clearly re-

veals the significant dimensionless parameters:

u/% =[£,/L + (cosh M - cosh Mn)/M sinh M ]
2(g, /L + 1/M tanh M - 1/M2)

= [7\ + g(M,n)J/[)x"‘ f(M)]: (15)

where QA gu/Iu It 1s seen that the velocity profiles thus genera-

ted depend on the functions f(M) and g(M), which are functions of the
parameter M only, and on the parameter A\. Fig. 2 shows ty:p;cal
velocity distributions for laminar flow in a parallel plate channel
under a transverse magnetic fleld of different strengths.

Before proceeding further, 1t 1s i1lluminating to determine the

slip velocity u_. Combining egs. (8) and (11) gives
u(n) = [(PLZ/;_;)/(GM tanh Mﬂ (1 - o cosh Mn/cosh M). (18)

Hence, the velocity gradient at the upper wall 1 =1 is
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2 2
(du/dn) a = [(PL /u)/(aM tenh M)| (aM tanh M) = - PL /u.
L (17)
It 1s seen that this gradient 1s independent of the parameters M and

A Thus gas rarefaction and/or imposed magnetic field gppareLtly have
1
no effect on the veloclty gradient at the wall.” Now, the slip veloc-

ity us 1s given by
u, = —Egu/l.)(du/dnlzl = (&,/I) (PLZ/u). (18)

From eq. (18), it is easily seen that the magnitude of the slip veloc-
ity 1s only dependent on the parameter §u/L (for a glven pressure
drop) and 1s nét a function of the magnetic-field ‘strength. This has
Important mathematical and physical consequences, as will be shown
later.

From eq. (15), the dimensionless slip velocity us/ﬁ and the
centerline velocity uc/ﬁ' are obtained by setting n =1 and 4 = O,

regpectively:

ug/T = M[A + £(M]] 5 (19)

uo/T = [N+ tanh (/2)/M /A + £(M)] = [ + e(0)]/[x + £(4)].
(20)
It 1s of interest to examine the wvelocity profiles for the limit-

ing cases M =0 eand large M. For M= 0, 1t can easily be shown

lTﬂis resgult is not mentioned in ref. 4 for continuum flow
(A=0) although fig. 1 of thls reference suggeste it was known to the
author.
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that. £(0) = 1/3 and g(0) = 1/2, so that

u/ﬁ = ES/E)(l - ﬂz) + 3)]/(1 + 37«):\
u /U= 3/(1+ 3), > M=0 (21)
u,/T = (3/2+ 3\)/(1+ 3\), J

which are the solutions for fully developed slip flow in a parallel
plate channel in the absence of a magnetic field(ref. 5)- For large M,

£(M) - 0, g(M) » O, and consequently

ug/T *NA =1, )

~ "

U, /T - NA =1, large M (22)

2
uy = A(PL /).

Hence, from eq. (22), one would conclude that for large M

—_ 2
u»uc-»usﬁ}\PL/u (23)

so that the gas veloclty is uniform across the duct and equal to zexo
only in the gbsence of gas rarefaction. Since thilis is not a physically
plausible result, the foregolng results must be restricted to small
values of the Hartmann number M.

Equations for us/ﬁ (eq. (19))and uc/ﬁ (eq. (20)) have been eval-
uated as functions of the two parameters M and A and are plotted in
figs. 3 and 4, respectively. Fige. 3 glves the veloecity slip at the

wall. It 1B seen that the dimensionless slip velocity ug/T increasses
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towdrd unity as M increases. Fig. 4 shows the behavior of the dimen-
slonless centerline velocity uc/ u. In the sbsence of a magnetid
field M = O, the effect of slip decreases this ratio from its maxi-
mm value of 1.5 (continuum flow) toward e velue of 1.0. If a magnetic
field is imposed, this decrease is accentuated with increasing magnetic-
field strength.

The current distribution J is found fram eq. (2), which gives
J 1in terms of the imposed uniform electric and magnetic fields and
the veloecity u

3= o(E - p_ul)

= (B/uE ) [(M cosh My/sinh M)- 1] (24)

when egs. (9), (10‘), and (12) are used. Hence, as 1s perhaps expected,
the current distribution is not dependent on the slip parsmeter .

As a matter of general interest, an examination shall be mede as
to how the wall friction is affected by the gas rarefaction and imposed
magnetic field. A wall friction coeffilcient for lamlnar flow is de-
fined as

S = 'er/pTl, (28)

where 'cm is the sghear stress at the wall:

(n/I) (du/dy) ]n (26)

Ty = - p,(du/dz)

f_l

nt from eq. (5) resulis in

S = (1/7\) (ug/t) = 1/[\ + £(m)] (27)
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with eg. (19).

In the sbsence of rarefaction effects, the value of S 1s 3 for
zero magnetic-field strength and increases without limit as the
magnetic-field strength increames. If, however, the gas is slightly
rarefled, the friction coefficlent is reduced, for a given value of
M, below the corresponding velue for continuwm flow. It 1s interesting
to note that eq. (27) predicts a limiting value for S of 1/\A as M
increages indefinitely. These results are shown in fig. 5.

The relstion between the mean velocity u and the pressure drop
P for the flow 1s of considerable interest and can be obtalned readilly

from eq. (13):
T = (B/uZor){M coth M/a)- . (28)

This equation can be recast into the more 1lluminating form

—_ 2 2
5= () + 2] = (B sy, (29)
where ¢ = 3(\ + f).
In the ehsence of gas rarefaction and imposed magnetic field,

the -correction factor  has the value of 1.0:

3], = Pré/3p. (30)

A=0
M=0
With gas rarefaction and/or applied magnetic field, the resulting flow
rate, for a given pressure drop, is ¥ times the value predicted by

eg. (30). The correction factor y has been evaluated as a function
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p

of the two parameters uqﬁﬁfﬁ?ﬁ and M, and is plotted in fig. 6 for

B = 1. G@as rarefaction tends to increase the flow rate, for a given
pressure drop, over that predicted by eq. (30), while the presence of
a magnetlc field. tends to suppress the flow rate. The direction of
these results 1s physlcally reasonable since with gas rarefaction there
is a lessening of frictional resistance to flow (fig. 5), vwhile the
presence of a magnetic field introduces a term in the momentum equa-
tion having a component always opposite to the directlon of gas flow
(hence & forece that retards the flow rate). The correction factor

becomes inaccurate as M —+ «, for then

\yIM = 3§u/L, (31)

which would suggest that only In the shsence of gas rarefaction can
the magnetic field completely .suppress the flow through the duct.
SECOND-ORDFR SLIP FLOW

The results of the precedlng section are based on a first-order
slip-flow boundary condition. In this section, brief consideration will
be glven to the effects of a second-order boundary condition. The
second-order slip-flow boundary condition is belleved applicable at
somewhat lower pressures (or higher temperatures) than is the first-
order condition.

The differential equation governing the flow velocity is, from
eqe (4),

dzu/d.'q2 - My = - M2(P/u§crH§ + E/ugHy). (32)
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The slip-flow boundery conditlion in the present analyseis is (ref. 6)

u(¢ 1) =u =¥ x(du/dq)nzil + x*(azu/anz)ngﬂ, (33)

where (ref. 6)

A = b/ =\Z [(2 - B)/B)(un/ET/uL)

(34)
A* = - (9%/16) (uA/RT/pL)
The solution for the velocity distribution u is found to be
u(n) = (PR u)(1/M) [(cosh M - o¥* cosh Mp)/a* sinh M_-_], (35)

where o = 1/(1 + AM tanh M - N*MZ). Setting n = 1 obtains the slip

veloclty wug:

(P17 /) (/M) [(L - &%) fo* b u]

o
"

i

(BL%/u) (1/31) [(NM tanh M - N*M°) /taxh M]

(PL2/u) (A - NeM/tanh M). (36)

il

It 1s seen from eq. (36) that consideration of a second-order boundary
condition introduces an additional term A¥M/tanh M in the slip
velocity expression. Now, for M =+ O (no magnetic field), M/tanh M~1,

and hence

= (BL2/u)(n - X%), (37)

which is correct (ref. 8). On the other

tanh M - 1, and consequently the term )\*(M/tanh M) increases without
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limit. Thus, uy becomes indefinitely large as M 1increases. This
result implies that a second order analysls is no longer adequate as
M increases in megnitude. As a consequence, 1t 1s concluded that the
uge of & gecond-order slip boundary eondition, as well as the first-
order boundary condition, is restricted to low values of the Hartmann
number M.

For the sake of completeness, expressions for the wall friction
coefficlent S and mean velocity u are as follows:

s = [\ - NMfrarh M+ £(0)], (38)
W= 3ELS/3e [\ - WM/ tanh M+ £(M)], (39)

where, again,

£(M) = 1/M tanh M - 1/MZ. (40)
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- LIST OF FIGURES

Figure 1. - Coordinaste system for parallel plate channel with uniform
transverse magnetic field.

Figure 2(a). - Velocity profile in parallel plate channel with no gas
rarefaction.

Figure 2(b). - Velocity profile in parallel plate channel (¢ /L = 0.2).

Figure 3. - Slip-to-mean velocity ratio Us/ﬁ' vs. Hartmann number M
and slip parameter A.

Figure 4. - Centerline-to-mean velocity ratio Uc/ﬁ' vs. Hartmann number
M and slip parameter A.

Figure 5. - Wall friction coefficient S vs. Hartmenn number M and
slip parameter A,

Figure 6. = Flow rate correction factor ¢ vs. Hartmann number M and
slip paremeter A.
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